
В ТНИИХТ было синтезировано двухслойное антикоррозионное покрытие на основе эпоксиуретана и хлорсульфированного полиэтилена представляющее собой вещество, защищающее металлические поверхности от коррозии.

Разработана технология получения двухслойного антикоррозионного покрытия на основе хлорсульфированного полиэтилена, который обладает высокой термостойкостью, атмосферной и химической стойкостью; поддается действию щелочей, кислот отвердителей, сильных разрушается под действием уксусной ароматических кислоты, хлорированных углеводородов. Используется хлорсульфированный полиэтилен получения ЛЛЯ износостойких коррозионностойких покрытий полов, а также клеев и герметика. Хорошая стойкость к воздействию озона, неблагоприятных погодных условий и химикатов. Низкая воспламеняемость. Исключительная стойкость к воздействию большого числа коррозирующих И окисляющих веществ.

Разработан технологический регламент производства пенополиуретана на опытно - промышленной установке

Подана заявка на выдачу патента № IAP 20120477 «Способ защиты нефтегазопроводов от почвенной коррозии».

Наружное двухслойное покрытие на основе эпоксиуретана и хлорсульфированного полиэтилена отвечает требованиям ГОСТ 9.506-87.

- 1.Стальная труба,
- 2. Эпоксиуретан,
- 3. Хлорсульфированный полиэтилен.

В настоящее время хлорсульфированный полиэтилен применяется в отечественной промышленности, выпускает огромное которая разнообразных лаков, количество используемых ДЛЯ защиты металлических, деревянных бетонных конструкций, при работе в тяжелых климатических условиях. Двухслойное антикоррозионное покрытие, на основе эпоксиуретана и хлорсульфированного полиэтилена, облалает лостаточно высокими коррозионностойкими свойствами для защиты бетона, металла и других материалов ОТ химических агрессивных воздействий.

Реультаты гравляя егрического определения степени защиты

Испытуе	æ	Контроль-						
мая среда	моП	ный образец	хее	же	хле	хтеє	хііче	
	Ж	0,0012	0,000003	0,000002	0,000003	0,000002	0,000002	
H_2O	Z	-	7,00	8'66	7,00	8,00	8,00	
NaCl	X	0,0059	690000'0	40000000	0,000061	0,000058	0,000061	
066	Z	,	8'86	8'66	6'86	66	6'86	
Na ₂ CO,	¥	0,0061	0,0000,0	85000000	0,000080	0,000061	0,000058	
969	Z	,	200	1,00	98'0	66	99,1	
Na,SO,	¥	0,0049	0,000061	850000'0	0,000061	0,000048	90000000	
969	Z	,	7,86	8'86	98,7	66	8,00	
NasS	¥	0,0000	0,00031	0,000074	0,000077	85000000	0,000000	
969	Z	,	94,8	98,7	98'6	66	66	
NHCO,	×	0,0057	85000000	85000000	0,000058	0,000007	0,000006	
596	Z	-	8'66	8'66	8,00	8,00	8,00	
CaCO,	K	0,0029	0£000000	0,000028	0,000034	90000000	90000000	
965	Z	,	6'86	66	8,89	7,66	7,00	
K, (t/ac²cyt)	doxo-	$K_{\epsilon}\left(r/\omega e^{r}cyr\right)$ - exoposes appoint Z %, - ethies selected	COLORD SERVICE					

N 1 2 8 4 5 7 7

ТАШКЕНТСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ. 111116, Ташкентская обл., Зангиотинский р-н, п/о Ибрат. Тел.0-370-96-5-77-16. gup_tniixt@mail.ru

ТАШКЕНТСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

ДВУХСЛОЙНОЕ
АНТИКОРРОЗИОННОЕ
ПОКРЫТИЕ НА ОСНОВЕ
ЭПОКСИУРЕТАНА И
ХЛОРСУЛЬФИРОВАННОГО
ПОЛИЭТИЛЕНА

ТАШКЕНТ-2020